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An Intelligent, Onboard Signal Processing Payload Concept 

Patirick Shriver, Jayashree Harikumar, Scott Briles, and Maya Gokhale 
Los Alamos National Laboratory, NIS-3 Space Data Systems Group, Los Alamos, NM 

ABSTRACT 
Our approach to onboard processing will enable a quicker return and improved quality of processed data from 
small, remote-sensing satellites. We describe an intelligent payload concept which processes RF lightning signal 
data onboard the spacecraft in a power-aware manner. Presently, onboard processing is severely curtailed due 
to the conventional management of limited resources and power-unaware payload designs. Delays of days to 
weeks are commonly experienced before raw data is received, processed into a human-usable format, and finally 
transmitted to the end-user. We enable this resource-critical technology of onboard processing through the 
concept of Algorithm Power Modulation (APM). APM is a decision process used to execute a specific software 
algorithm, from a suite of possible algorithms, to make the best use of the available power. The suite of software 
algorithms chosen for our application is intended to reduce the probability of false alarms through posbprocessing. 
Each algorithm however also has a cost in energy usage. A heuristic decision tree procedure is used which selects 
an algorithm based on the available power, time allocated, algorithm priority, and algorithm performance. We 
demonstrate our approach to power-aware onboard processing through a preliminary software simulation. 

Keywords: power-aware, onboard processing 

1. INTRODUCTION 
Our objective is to maximize capability and performance of remote-sensing satellites through smarter use of 
processing resources. ‘Ikchnological advances in instrument designs provide increases in resolution at a cost of 
transmission power. A byproduct this of increased resolution is the generation of large volumes of data. The 
more data generated, the more power required to transmit the data. Large power requirements in turn increase 
the spacecraft financial costs and “design-to-launch” time. Onboard compression and feature extraction can be 
used to reduce the data rates required for transmission, however, traditional power management strategies make 
significant onboard processing impractical. Conventional spacecraft architectures only collect raw data and leave 
processing tasks to be performed on the ground. By enabling onboard processing, it is hoped to quickly provide 
accurately processed, field-usable data to the end-user. However, in this resource critical problem, a smarter 
distribution of power resources is essential. We are developing a power management design paradigm for intel- 
ligent, next-generation processing payload systems through the unique concept of Algorithm Power Modulation 
(APM). With APM, a spacecraft payload processor can operate at multiple levels of power consumption in a 
power-aware manner while remaining sensitive to the mission tasks. Through judicious selection of the process- 
ing algorithm, data can still be processed onboard at some level of accuracy even during periods of low power 
availability. In this paper, we describe a power-aware processing payload concept that utilizes APM to process 
simulated orbital lightning signal data. This application is focused on improving detection capability through 
accurate, post-trigger processing. 

Based on our payload concept, we have developed a simplified software simulation to demonstrate APM. The 
simulation consisl;s of three main modules: battery model, event rate model, and the APM decision scheduler. 
These modules were incorporated and run through a 36 minute eclipse orbit test case. APM is compared to a 
more non-intelligent approach that just executes one specific algorithm. Our preliminary results show that APM 
drains more battery capacity than the benchmark, one-algorithm cases, but APM balances the power used with 
parameter estimation accurw and detector performance while minimizing the number of lost events. 



2. BACKGROUND AND MOTIVATION 
We are currently seeing spacecraft system-related complications in implementing cutting-edge, advanced remote- 
sensing instrument payloads. Continual improvements in instrument technologies are providing ever-increasing 
resolution accuracies that result in growing demands of required transmitter power. The typical remote-sensing 
satellite has only a finite number of ground contacts with a limited duration over each contact. Hence, the high 
volume of raw data generated by these advanced instruments translates directly into high data rates during 
downlink opportunities. For example, one such advanced instrument class is the Hyperspectral Imagery (HSI) 
sensors. HSI instruments collect both spatial and spectral information generating hundreds of megabytes to 
gigabytes of data within a few minutes.’ These massive amounts of data push the limits of existing system 
technology. As defined by the communication link equation, there is a direct cost relationship in required 
transmitter power for a given data rate? A ten-fold increase in the data rate requires a subsequent ten-fold 
increase in the power for transmission. 

&om the systems design perspective, power is a significant factor in the physical size and resultant cost 
of the mission. Spacecraft within the orbit of Mars typically operate on photovoltaic power in combination 
with rechargeable, secondary batteries* .3 Available power to spacecraft systems is therefore constrained by the 
amount of electricity generated by photovoltaics and the capacity that can be stored in secondary batteries. 
Increased solar panel surface area provides increased power, but also contributes to increased physical size. 
Likewise, more batteries provide additional power at a cost of increased mass. As a general rule, the larger the 
spacecraft, the higher the financial costs and the longer the “design-to-launch” time. Although a difficult metric 
to measure, due to a wide variety of mission and performance requirements, an average spacecraft cost for Low 
Earth Orbit (LEO) missions is estimated at $1,000 per kilogam! In remote-sensing applications, there are 
two possible approaches to onboard processing techniques that will reduce the amount of data rates required for 
downlink data compression and feature extraction. 

The first, and more traditional, approach is to compress the science data as much as possible. There are 
two primary costs associated with this approach, which include the loss of information as a byproduct of the 
compression algorithm and the computations) effort required to perform the compression. The objective in this 
case is to maximize the compression ratio that also minimizes or provides an acceptable loss of information in 
the data. One such method describes a HSI compression algorithm that enables a 100-fold increase in instru- 
ment coverage without an increase in required transmission power but has a corresponding 100-fold increase in 
computational cost? Although this first approach does promise to decrease the data size for downlink, it does 
not address the operational problem of data latency. The data must still be uncompressed and processed on the 
ground after transmission. Delays of days to weeks can be experienced before the data is collected, transmitted, 
processed into a human-usable format, and given to the end-user. 

A second approach is to extract pertinent features of interest from the data and downlink only the selected 
portions of the datat. As a well-known spacecraft design example, this issue is discussed in relation to the 
conceptual forest fire detection spacecraft known as Observational data gathered over the Earth’s 
polar reefions is obviously unnecessary. Storing the useless polar cap data usea up valuable onboard storage space 
and contributes to latency. A person on the ground must sift through the entire data set and filter out the polar 
cap data. Processing the data onboard and selecting only that which is of interest can significantly reduce data 
rates and ground operational costs, as well as data latency? 

An important, innovative outcome of feature extraction is onboard science analysis. The onboard analysis 
can extract and process useful information from the observational data. This information can then be used to 
improve detection performance or reconfigure a detector based on the incoming data. The algorithm performance 
characteristics are important considerations in the selection of algorithm to use. In one study of three possible 
onboard HSI detection algorithms, the algorithm performance is evaluated in regard to false alarm detections 
versus the image size and computational effort.’ 

*Beyond the orbit of Mars, existing solar panel efficiencies are not practical for use. The required surface areas to 
operate beyond the orbit of Mars are too large. Instead, these spacecraft rely on Radio-Isotope Thermal Generators 
(RTGs) for power, Spacecraft using RTGs are not considered for the concepts presented in this paper. 

‘Note that these two approaches are not necessarily mutually exclusive. One can imagine a scenario in which relevant 
featurtw are selected and cornpremed to significantly reduce the required transmission power. 



However, during operations, most spacecraft do not utilize significant onboard processing and typically store 
the raw data for downlink, leaving difficult trade decisions in terms of data collection and transmission.* Both 
positive and false-positive detections are saved until the data can be downlinked. This can be wasteful of the 
onboard data storage resources and limit detection capability performance. In part, this paradigm has been 
due to concerns within the scientific community of maintaining control over all aspects of the data proceasing. 
Although, if the processing methodology is known and well-behaved, or there exists a method to reconstruct 
events based on a few extracted parameters, the potential advantages of reduced costs, decreased latency, and 
improved detection performance from onboard processing should be seriously considered. 

This operational paradigm has also been due to a traditional approach of power management. Electrical 
power is handled onboard using static, non-intelligent designs. The conventional strategy is a basic binary 
approach a subsystem is either on or off. Simplified, onboard logic protects against power system faults. During 
severe power-constrained or unexpected conditions, such as eclipse or partial solar panel failure, non-critical 
subsystems may be turned off altogether. Under such circumstances, payload subsystems are typically the first 
to be turned off. Although essential to the mission objective, the payload is not necessary for spacecraft survival. 
This operational paradigm can result in a loss of vital data at a crucial moment? 

Although intelligent power management has been a cutting-edge research topic in recent years for ground- 
based, mobile computing systems, it still remains largely unexplored for spacecraft applications. Existing satellite 
power management strategies are not flexible enough to take full advantage of these emerging processing tech- 
nologies. Advances in electronics technology have produced multiple modes of processing operation. A processor 
can operate in dflerent modes at varying levels of power consumption. For example, the IBM PPC750 266MHz 
processor has 5 typical modes of operation that range from 30mW to 5.W.* Most notably, multiple operational 
mod@ are commonplace in ordinary laptop computing to conserve battery power while disconnected from an 
external power outlet. A recent area of power research, sponsored by the Defense Advanced Projects Agency 
(DARPA) Power Aware Computing/Communications (PAC/C) program, is focused on developing intelligent, 
power-aware systems.g This research is based on the premise that systems aware of their own power usage can 
make better use of the available power resources, A system aware of its power consumption can dynamically 
adjust workload t a sh  to change the operational mode. Thus, with power-aware techniques, it is conceivable 
for a processing payload to process data onboard, at some level of accuracy, even during periods of low power 
availability#. 

Our research focwes on developing and demonstrating an onboard processing payload concept that executes 
signal processing tasks in-situ based on the available resources while remaining sensitive to the mission objectives. 
This is a needed paradigm shift in conventional power management methods to enabIe advanced, intelligent 
processing payload systems. We have focused in the area of feature extraction through accurate parameter 
estimation and have determined a method to improve detection performance. 

, 

3. PAYLOAD CONCEPT 
With support from the DARPA PAC/C program, we have developed an intelligent onboard processing payload 
concept using an open application familiar to LANL staff with a potential impact on next-generation payload 
designs. It is our vision that APM will help enable onboard processing technologies for future spacecraft. The 
application selected is the Fast On-Orbit Recording of Transient Events (FORT&) satellite mission. FORT&, 
funded by the Department of Energy, wag launched in August of 1997 and is a joint LANL project with Sandia 
National Laboratory. Our concept is described in literature,1° but for convenience, we briefly summarize the 
concept in this section. 

3.1. FORTE Mission Application 
A primary objective of FORTB is to detect the Roidio-frequency (RF) signal of Iightning events in the Earth’s 
atmosphere.l1 As received on-orbit, the RE’ lightning signal is a “chirp” waveform amidst a noise of anthro- 
pogenic signals and background cosmic ray particles. The chirp signal is a result of the frequency dispersion 

$It should be noted that power-aware does not necessarily imply power-eficiency. Instead, power-awaw systems axe 
concerned primarily with the maximum utilization of available power rmurcea, which, depending upon the application, 
may or may not include power minimization. 



Figure 1, Payload Concept: The diagram on the left represents the conceptual data flow diagram of processing the 
chirp signals. Post-trigger processing algorithm decisions are to be made based on the available resources. The chart on 
the right displays the trigger box Receiver Operating Characteristic Curve. The post-trigger processing can reduce the 
probability of false alarms. 

experienced during propagation through the ionosphere. An analog trigger box provides multiple channels of 
sub-band filters that attempt to detect the presence of a lightning event. A detection trigger occurs when N 
of M channels break threshold to satisfy the predetermined criterion. FORTE does not have the capability to 
process this data onboard and, hence, stores only raw data for downlink. Since the threshold criterion is preset, 
the receiver’s operating point remains fixed and a certain probability of false alarms must be accepted for a 
desired probability of detection. As discussed in the next section, post-trigger processing techniques can further 
reduce the amount of false alarms through increased expenditure of energy. This application concept is depicted 
in Figure 1. 

3.2. Algorithm Power Modulation Solution 
Our approach to this problem has been to develop a suite of signal processing algorithms that can be run on 
a multi-processor system. The algorit,hms can be executed independently to estimate the parameters of Total 
Electron Content (TEC) and Time-Of-Arrival (TOA) from simulated chirp signals. Each algorithm has an 
associated level of estimation accuracy and energy consumption. The chosen algorithms include a Least-Mean- 
Squares (LMS), Maximum Likelihood (ML), Software Trigger (ST)!, and a bank of Matched Filters (MF). An 
algorithm power experiment was performed on a PPC750 266MHz test-bench provided by the Jet Propulsion 
Laboratory as part of the PAC/C effort. The result was a lo6 order of magnitude difference in energy usage 
between the four algorithms. These four algorithms have been exercised via Monte Carlo testing with the 
simulated signals. Using the Root-Mean-Squared (RMS) error as a metric of performance, these performance 
values were correlated with the energy measurements and outline a decaying exponential profile with an increase 
in energy expended.12 

Through further analysis, the relationship between energy usage and reduction in the probability of false 
alarms for each algorithm was determined for a given operating point of the trigger The results of this 
analysis are depicted in Figure 2. It is shown that the MF algorithm can reduce the probability of false alarms 
to near zero with a significantly increased cost in energy usage. 

- 1  

SThe ST algorithm performs multiple, short FFTs on the signal to estimate TEC and TOA. 
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Figure 2. Probability of False Alarm Reduction: This chart illustrates the performance of the signal processing 
algorithms to reduce the probability of false alarms through expenditure of energy. 

4. SIMULATION DESCRIPTION 
The simulation is accomplished through a two step process. The first step simulates the FORTE orbit using the 
comercially available Satellite Tool Kit@program. In this step, the FORT& latitude and longitude locations, for 
a given time period, are fed into a lightning event rate model to determine the event rate at a specified latitude 
and longitude, The second step simulates the payload operation given the event rates, which is written in C++. 
As a first-generation of the simulation, only one processor is considered in the payload operation. The operation 
algorithm steps through the event rates and power is consumed from the battery model based on the chosen 
algorithm properties. Since, in spacecraft, the highest typical resolution of monitoring the battery state is one 
second, power is only drawn from the battery every second in the simulation. Additionally, only one algorithm is 
executed during this interval. For evaluation and comparison purposes, the user has the option of implementing 
the APM decision scheduler (see section 4.3) or to specify one of the LMS, ML, ST, or MF algorithms to execute. 
An average rate of discharge over this time step is determined based on the number of times a given algorithm 
executes and the corresponding charge consumption. When an algorithm is not executing, charge is drained at 
an operational background rate of 1800mA, as observed in the JPL power experiment (see section 3.2) when 
the algorithms were not executing on the PPC750 processor. A ring buffer module keeps track of the number 
of events residing in memory. The maximum capacity of the simulated ring buffer 15OMbf. The following 
subsections briefly discuss the main modules of the simulation, which include the event rate model, battery 
model, and the APM decision scheduler. 

4.1. Lightning Event Rate Model 
Lightning occurrence and lightning type is a function of terrain, concentrations of the cloud nucleus condensation, 
and temperature. Lightning can traverse between clouds, from cloud to ground and from ground to cloud. The 
data used in developing the lightning model discussed in this paper does not distinguish between these different 
types of lightning. The data used in this simulation was recorded by the optical sensor on FORTE. As a result, 
some lightning may be missed because of clouds in the field of view. The primary emphasis on FORTE is to 

(FORTfi has a variable sampling rate of the lightning chirp signals. In our simulation, we have chosen a typical chirp 
size of 150Kb. The simulated ring buffer can therefore hold a maximum of 1,000 events. 
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Figure 3. Northern Hemisphere Summer Event Rates: This figure shows the number of FORT& optical sensor 
triggers 88 a function of latitude and longitude for the Northern Hemisphere Summer season. 

measure impulsivt! electromagnetic pulses due to lightning within a noise environm$nt dominated by continuous- 
wave carriers such as television and FM stations." The optical sensors on FORTE augment the FU? system on 
FORTE in characterizing lightning events. 

The satellite optical sensor is a fast-time responfk? photodiode detector with a 80' field of view. Since FORTh 
is in a near-circular orbit at 425km altitude, the optical senmr viewing area is ~1200km of Earth's diameter. 
The photodiode detector is amplitude-threshold triggered with a noise riding threshold. A lightning event is 
assumed to have occured when a trigger is recorded by the sensor. When trigger rates exceeded -5oO/sec the 
presence of high energy particle hits was assumed and lightning signals are assumed non-existent in our model. 

The lightning event rate model for our current application was developed from the FORTh lightning data 
set that comprises fifteen months of data between 1998 and 2002. The monthly variation in lightning has been 
summarized 3 months at a time to produce 4 sets of seasonal global lightning activity. December, January, 
Fkbruary wm designated as winter; March, April, May constitute spring; June, July, August represent summer; 
September, October, November compose lightning activity in Fallll. Principal component analysis was next 
applied to detect if there was a predominant lightning pattern data set. The current data did not reveal any 
dominant pattern. This supports the basic claim that lightning is a function of seaaon and terrain. Figure 3 
show the lightning events (triggers recorded by the photodiode detector) aa a function of latitude and longitude 
for the Northern Hemisphere Summer. A subset of these event rates, reflecting one orbital eclipse period during 
Summer, is used in the preliminary simulation results. 

4.2. Battery Model 
The battery model is based on the Maxell ICR18650G manufacturer cell data.14 This is a Lithium-Ion cyliidrical 
cell with a nominal voltage of 3.6V and nominal capacity of 1700mAh. The following considerations were made 
in developing the battery model: 

discharging The discharge curves are based on the discharge characteristics given in the manufacturer data. 
Linear interpolation and extrapolation is used to determine points not on the given curves. Cells are 
nonlinear in nature, but, for our work, a model based on linear interpolation and extrapolation of the 
manufacturer data can yield reasonable accuracy.16 

IlNote that these seasons correspond to those in the Northern Hemisphere. 



charging The charging characteristics are neglected in this first version of the simulation. Normally, the space- 
craft batteries are recharged during sunlight periods immediately following the eclipse periods. The amount 
of battery capacity at the beginning of an eclipse period is therefore a function of the capacity drained 
during the previous eclipse period and the amount charged during sunlight. Our simulation assume8 a 
maximum Capacity at the beginning of the eclipse period. 

cycle life The long-term effects of discharge-charge cycles are neglected. At this time, the simulation is not 
used to evaluate battery operation life. 

temperature Temperature has a significant impact on battery performance. As temperature decreases, the 
battery capacity during discharge also decreases.l* However, for simplification, temperature effects are 
neglected. 

PPC750 Typical Full-On Power Consumption 
Maximum Eclipse Duration 
Cell Depth-Of-Discharge (DOD) 

mble 1. Battery Sizing Parameters 

5.7W8 
35min.l' 

80% 

I PPC750 Nominal Voltage I 2.5V - 2.7V8 I 

t - 4 1 Required Battery Capacitg I 1600mAh 1 

Using the cell data, the battery was sized according to the power requirements of the PPC750 processor and 
the estimated orbital eclipse duration. We only consider power consumed by the microprocessor. It is understood 
there would also be memory, cache, voltage supply, etc., in order to make practical use the processor, but, for 
our preliminary results, we are neglwting the power consumption and inefficiencies of these components. Table 
1 lists the parameters involved in sizing the battery. The required battery capacity is obtained by dividing the 
average capacity drained during eclipse, 1280mAh, by the DOD. This is the capacity of the battery required to 
meet the processor full-on power consumption during eclipse. Since one cell provides a nominal voltage of 3.6V 
and 1700mAh,14 only one cell is necesary per processor. 

The model takes, as input, the increment of capacity drained and the discharge rate over the one second 
simulation time step (as described in section 4). The capacity increment is subtracted off from the total battery 
capacity. The battery voltage is then interpolated or extrapolated from the total battery capacity and discharge 
rate. The model then returns both the total capacity left and the voltage level. Figure 4 illustrates the battery 
model under constant rates of discharge. Qualitatively, these curves are typical of battery properties16 and match 
those of the manufacturer data. Since we do not have access to this battery cell and a discharge testbench, a 
quantitative validation of this model is not possible. 

4.3. APM Decision Scheduler 
Initially, we have taken a heuristic approach to developing the decision scheduler that selects a given algorithm to 
execute. The decision procedure first determines a set of algorithms that can execute in the available power over 
the next one second interval. For each of the algorithm properties, a comparison is made of the predicted battery 
capacity drained over the next interval and the resultant voltage. If the predicted capacity does not exceed the 
maximum battery capacity (1700mAh) or the end voltage (3V), the algorithm is placed in the possible set of 
choices. A second decision determines which of the algorithms in the set can execute under the time constraint 
predicted by the amount of events in the ring buffer over the next interval. If the algorithm is in the set and the 
predicted number of events is: 

0%-25% of the maximum capacity, run MF 

25%-50% of the maximum capacity, run ST 
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Figure 4. Battery Model Discharge Curves: This figure illustrates the battery model discharge properties under 
constant rates of discharge. Note that the temperature is constant at 2OOC. 

50%-75% of the maximum capacity, run ML 

75%-100% of the maximum capacity, run LMS 

If there is not enough predicted battery capacity or voltage, no algorithms are executed and the processor is 
placed in the “idle” state (1800mA). In this case, the ring buffer will continue to fill up with events for a non-zero 
event rate. 

5. SIMULATION RESULTS 
The simulation is run through five test case scenarios: four of which execute only one specified algorithm and 
the fifth scenario uses APM (see section 4.3) to switch between the algorithms. Each test case uses the same 
event rate data and simulates a FORTE eclipse period of approximately 36 minutes. During this time, the 
event rates range from approximately 2 events/sec to 182 events/sec. As mentioned in section 4, the battery is 
drained at every one second interval, so an average discharge rate is calculated over this one second time step. 
The discharge rate depends upon the number of executions each algorithm performs in this time step. The 
number of events processed also depends on the maximum number of possible executions. Table 2 depicts the 
time duration of each algorithm and corresponding number of maximum possible executions within a one second 
interval. The time duration of each algorithm was determined during the power measurement test on the Jet 
Propulsion Laboratory tesGbench.1° 

Table 2. Algorithm Duration Properties 

I ST I 8.34ms I 119 I 
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Figure 6. Event Proceasing Performance of S T  and MF Algorithms: This figure shows the performance of the 
ST and MF algorithms in processing events in the ring buffer. Both the number of events in the ring buffer and the events 
lost over the simulation time are shown. For comparison, a plot of the event rate is also illustrated. 

In comparison to the data in Table 2, it is apparent that the LMS and ML algorithms should be able to 
process all events as they occur in the one second interval. However, the ST and MF algorithms will have 
difficulty processing events in this interval. ST will begin to have difficulty when the event rate exceeds 119 
events/sec. At this point, events will begin to fill memory space in the ring buffer. MF should have difficulty 
during the majority of the simulation run since. Events are counted as “lost” when the number of events in the 
ring buffer exceeds 1,000**. It should be noted that APM executes the faster LMS and ML algorithms when the 
numbet of events in the ring buffer exceeds 500 (see section 4.3). 

Performance of the ST and MF algorithms in processing events is illustrated in Figure 5. As expected, the 
MF algorithm cannot keep up with the high initial event rate and begins to lose events almost immediately. At 
most, MF can only process two events in the one second interval. The ST algorithm provides better performance 
until the event rate exceeds 119 events/sec. At this time, events begin to fill up in the ring buffer. A brief drop 
in the event rate near 1500 sec allows the ST algorithm to process all events. However, a sharp rise in the event 
rate to 180 events/sec causes the ST algorithm to once again fall behind in processing and start losing events. 

The number of executions of a given algorithm has an effect on the capacity drained and discharge rate 
over the simulation time step. For a given algorithm, the greater the number of executions, the more capacity 
drained, and the higher the discharge rate. Figure 6 depicts the discharge rate versus the capacity drained during 
simulation. Both LMS and ML have relatively small changes in the discharge rates due to their fast execution 
times. The MF algorithm has no change in its discharge rate since it always executes twice in the one second 
time step. By contrast, the ST algorithm causes large changes in the discharge rate due to its varying rates of 
execution and power consumption. 

From the results of Figurc 6, it is expected that the LMS, ML, and MF during discharge will exhibit relatively 
smooth voltage profiles while ST should exhibit visible changes in the voltage levels. Additionally, APM should 
exhibit more abrupt changes in voltage to reflect the switch between different algorithms. The simulation does 
exhibit these properties as illustrated in Figure 7. 

**Note that the simulation assumes that once an event is  processed, it is removed from the ring buffer. Thus, the ring 
buffer is simulated as a temporary memory buffer for the incoming data sets. 
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Figure 8. Discharge Rates: This figure depicts the discharge rates of LMS, ML, ST, and MF algorithms. The ST 
algorithm shows the largest fluctuation in discharge rate. 

Figure 7. Voltage Profile: This figure illustrates the voltage profiles versus the capacity drained during simulation. 
Note that the chart on the right also illustrates APM switching between ML, ST, and MF algorithms. Due to the fast 
execution of ML, A P M  did not need to execute LMS. 



One might expect that, since APM switches between algorithms, the capacity drained by APM would be in 
a mid-range when compared to the capacity drained by all the other algorithms. Through examination of Figure 
7, one can see that APM actually consumes more capacity than any of the other algorithms. This is due to APM 
predominantly running the ST and MF algorithms. When the ST algorithm executes approximately 25 times 
in the one second time step, the capacity drained is equivalent to that drained by executing MF twice in the 
time step. When 8T executes more than 26 times, the capacity drained is greater than the drain experienced by 
executing the MF only twice. Likewise, when ST executes less than 25 times, the capacity drained is less than 
that drained by executing MF twice. Strictly in terms of capacity drained, APM appears to select the worst 
case, Le., it selects ST when ST executes enough times to drain more capacity than MF and selects MF when 
MF drains more capacity than ST. Thus, APM drains more capacity than either ST or MF alone by selecting 
them during these worst-case conditionstt . 

This provides an example of how a power-aware system is concerned with the maximum utilization of the 
available power rwurces and not necessarily concerned with power minimization. The benefit APM provides is 
in the accuracy of the estimated parameters, the reduction in false alarms, and the number of processed events. 
Since APM primarily uses MF and ST algorithms, the parameter estimation accuracy is greater than running 
LMS or ML alone. Through running MF and ST, APM also reduces the probability of false alarms. This helps 
to reduce the number of false alarms that will wastefully use onboard memory space and improve the quality of 
data downlinked to the ground. Additionally, APM does not loose any events as with the MF or ST algorithms 
alone. Thus, APM does make better use of the available power in processing events. 

6. CONCLUSIONS 
As instrument technology advances, the need for onboard processing is becoming more apparent. Onboard 
processing can help to reduce the required high data rates, and thereby mission costs, reduce data latency, and 
support onboard science analysis to provide better quality of data to the end-user. However, most spacecraft 
do not have the capability to provide significant onboard processing in large part due to the conventional power 
management paradigm. We seek to enable onboard processing through development of intelligent payload systems 
that can dynamically adjust their operational mode by being aware of the currently available power resources. 
We use the concept of APM to select a signal processing algorithm, from a suite of possible algorithms, based 
on the algorithm performance, incoming event rate, and available power. 

We have built a simplified software simulation based on the mission application of the FORTE satellite to 
study lightning events in the Earth’s atmosphere. The objective of our processing concept is to process lightning 
events as received on-orbit. The simulation is composed of three main modules including the battery power 
source, event rate, and decision scheduler. We ran the simulation through two types of test case scenarios. 
The benchmark case is in executing a single algorithm to process the lightning signals. It is shown that APM 
consumes more battery capacity than in the benchmark cams, but, unlike the benchmark cases, APM balances 
power utilization with improved parameter estimation and enhanced detection performance while minimizing 
the number of lost events. 

With APM, a Satellite onboard payload processor is sensitive to the mission tasks and power availability. The 
payload processor operates in a power aware manner by determining the status of the battery capacity and the 
size of the data ring buffer before processing an event. Both, the ring buffer and the battery have a finite capacity 
and consequently decisions to process events with a particular algorithm is a function of both parameters. If 
events are not processed quickly, the data in the ring buffer can be overwritten and lost. At the same time, the 
battery charge level is a function of time and tasks performed. A battery can reverse polarity and destruct if it 
goes beyond a specified end voltage. Under such conditions on a spacecraft,, the fault protection system usually 
switches off the subsystems to protect the battery. 

ttAlthough APM drains more capacity, it does not go below the specified end voltage or rated capacity. APM still 
operates within the safe limits of the battery. 
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